Logo

Getting Started

  • Introduction to RapidCanvas
  • Accessing the platform

RapidCanvas 101 A Quick Start Guide

  • RapidCanvas 101: A Quick Start Guide

Documentation

  • Projects
    • Projects overview
    • Canvas Overview
    • Recipes
    • Segments and Scenarios
    • Schedulers
    • Predictions
    • Template library
      • Templates Library
        • Datasets to test Templates
        • Templates Available
          • Add Prefix
          • Add Value Column
          • All
          • Any
          • Append datasets
          • At Time
          • Auto ML Binary class
          • Auto ML Regression
          • Back Fill
          • Between Time
          • Bin columns
          • Car Crashes Dataset Sample
          • Cartesian Product
          • Change Value of Specific Cell
          • Check Column Types
          • Check Duplicated Row
          • Coalesce
          • Columns
          • Columns Covariance
          • Compute Correlation
          • Concat Columns
          • Convert target for binary classification
          • Copy dataset
          • Correlation Matrix
          • Count Unique Values
          • Cube Column
          • Cube Root Column
          • Cummax
          • Cummin
          • Cumsum
          • Cut Column
          • Data quality
          • Dataset head
          • Dataset tail
          • De-Normalize Column
          • Describe dataset
          • Detect Missing Values
          • Detect Non-Missing Values
          • Discretize by Binning
          • Discretize by Frequency
          • Discretize by Size
          • Divide Column
          • Drop Columns
          • Drop Duplicates
          • EDA Data profiler
          • EDA Default
          • EDA schema lite
          • Encode Column
          • Feature selection
          • Fill Null Timeseries
          • Fill Nulls
          • Filter Dataset Equal
          • Filter Dataset Greater Equal Than
          • Filter Dataset Greater Than
          • Filter Dataset Less Equal Than
          • Filter Dataset Less Than
          • Filter Example Range
          • Flatten Dataset
          • Forward Fill
          • Frequency encoding
          • Generate 10x10 Identity dataset
          • Generate 10x10 Negative Int dataset
          • Generate 10x10 Random Int dataset
          • Generate 10x10 Zero dataset
          • Generate NxN Identity dataset
          • Generate NxN Negative Int dataset
          • Generate NxN Random Int dataset
          • Generate Zero dataset
          • Geo Sample Dataset Cities
          • Geo Sample Dataset Countries
          • Geo Sample Dataset NY
          • Get Dummies
          • Group by column max
          • Group by column mean
          • Group by column min
          • Head
          • Independent Component Analysis
          • Interpolate Missing Values
          • Intersection
          • Iris Dataset Sample
          • Is In
          • Kurtosis
          • Locate by integer position
          • Locate by label position
          • Make Mixed dataset
          • Map
          • Memory Usage
          • Merge datasets
          • Multiply Column
          • N Largest Values
          • N Root Column
          • N Smallest Values
          • New Constant Column
          • Normalize dataset
          • One Hot Encoder
          • One Hot Encoding
          • Penguins Dataset Sample
          • Pivot dataset
          • Planets Dataset Sample
          • Pop Column
          • Power N Column
          • Principal Component Analysis
          • Random forest
          • Rank By
          • Rename Column
          • Replace Infinite Values
          • Replace Value
          • Replace with Dictionary
          • Round decimal places
          • Sample Bootstrapping
          • Sample Dataset
          • Sample of a Column
          • Sanitize column names
          • Shuffle Dataset
          • Single Describe for Whole Dataset
          • Singular Value Decomposition
          • Skew
          • Sort by Column
          • Split dataset
          • Square Column
          • Square Root Column
          • Stack
          • Standard Deviation
          • Standard Error of Mean
          • Subtract Value Column
          • Sum
          • Superset
          • Tail
          • Take Value
          • Titanic Dataset Sample
          • Time to event
          • Train test split
          • Transpose dataset
          • Truncate dataset
          • Tsfresh features
          • Undersample timeseries data
          • Union
          • Unstack
          • Value Counts
          • Value Multiplication
          • Variance
  • Connectors
  • Environments
  • DataApps
  • Artifacts & Models
  • Workspace Management
  • User roles and permissions
  • Glossary

Release Notes

  • Release Notes

Notebook

  • Notebook User Guide
RapidCanvas
  • Projects
  • Templates Library
  • Head

Head

This transforms returns the first five rows of the input dataset.

tags: [“Data Preparation”]

Parameters

The table gives a brief description about each parameter in Head transform.

Name:

By default, the transform name is populated. You can also add a custom name for the transform.

Input Dataset:

The file name of the input dataset. You can select the dataset that was uploaded from the drop-down list. (Required: True, Multiple: False)

Output Dataset:

The file name with which the output dataset is created. This file contains the first five rows of the input dataset. (Required: True, Multiple: False)

The sample input for this transform looks as shown in the screenshot.

../../../_images/head_input.png

The output after running the Head transform on the dataset appears as below:

../../../_images/head_output.png

How to use it in Notebook

The following is the code snippet you must use in the Jupyter Notebook editor to run the Head transform:

template=TemplateV2.get_template_by('Head')

recipe_Head= project.addRecipe([car_data, employee_data, temperature_data, only_numeric], name='Head')

transform=Transform()
transform.templateId = template.id
transform.name='Head'
transform.variables = {
'input_dataset':'car',
'output_dataset':'headc'}
recipe_Head.add_transform(transform)
recipe_Head.run()

Requirements

pandas

Previous Next

© Copyright 2025, RapidCanvas.

Built with Sphinx using a theme provided by Read the Docs.